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INTRODUCTION

The objective of this research was to produce a nucleic acid sequence that will bind to
mutant human p53 protein to enhance its tumor suppressor ability. Normal p53 protein is both a
transcription factor and a suppressor regulating the expression of a wide range of genes involved
in apoptosis, growth control, and inhibition of tumor cells proliferation in animal models.
Mutations that inactivate the pS3 gene are important steps in tumor progression and often affect the
protein’s DNA binding ability. These mutant pS3 proteins have significant changes in their
structure (for a review, see Erlanson and Verdine, 1994). Inactivation of the p53 protein occurs
often in advanced breast cancer, and since loss of p53 functions results in increased cell
proliferation and decreased cell death, tumors without a functioning p53 are more likely to have a
very aggressive clinical course (Elledge et al., 1993). If a method can be found to return the
structure of a cancer cell’s mutant p53 to more more nearly resemble the wild-type form, the cell’s
normal apoptotic mechanisms may be activated, resulting in the cell’s self-destruction. We
attempted to use SELEX (Systemic Evolution of Ligands by EXponential enrichment) (Fitzwater
and Polisky, 1996; Conrad and Ellington, 1996; Tuerk and Gold, 1990) to find short RNA
molecules that can bind to recombinantly produced p53. The use of specific nucleic acid sequences
to bind to p53 protein to accomplish this task has some significant advantages. Combinatorial
methods can be used to screen a large number of possible RNA sequences and once effective RNA
oligomers are found, it is conceivable that viral vectors can be constructed that can infect cells and

express the desired RNA to restore normal function to mutant p53 protein.




BODY

EXPRESSION, PURIFICATION, AND CHARACTERIZATION OF
HUMAN WILD TYPE P53 PROTEIN

The human p53 expression system used was provided by Dr. Peter Tegtmeyer of the State
University of New York at Stony Brook. The vector contained a human wild type p53 gene
1.3 kb (hWTp53) that had been inserted into a plasmid (pPCMH6K) downstream of a sequence for
a typical mammalian translation initiation sequence and a sequence coding for the following amino
acids: MAYPYDVPDYAARHHHHHH. This peptide leader codes for a hemaglutinin epitope
followed by six histidine residues that allow for rapid purification by Ni-affinity chromatography.
This expression cassette was then excised using unique Nhe I and BamH I sites and subcloned
into a pIT baculovirus expression vector (Wang et al., 1993).

Large scale expression was carried out in three T150 tissue culture flasks. The cells were
harvested and lysed in buffer containing 150 mM Tris-HCI at pH 9.0, 150 mM NacCl, 0.5% NP-
40 detergent, 10% glycerol, 2 uM phenylmethylsulfonyl fluoride, 50 pg/ml aprotinin, 50 pg/ml
leupeptin, 10 pg/ml pepstatin A, 2 mM benzamidine, and 1 mM B-mercaptoethanol at 4 °C. Cell
lysates were passed through a Ni-NTA agarose column (Qiagen, Inc.) also at 4 °C and washed
with 50 mM sodium phosphate, 300 mM NaCl, and 10% glycerol, pH 6.0, until the optical
density at 280 nm of the flow-through was less than 0.01. The p53 protein was eluted with 0.5 M
imidazole in 50 mM sodium phosphate, 300 mM NaCl, and 10% glycerol. The eluted p53 protein
was dialyzed against 20 mM Tris-HCI, pH 8.0, 100 mM NaCl, and 50% glycerol at 4 °C
overnight. The purity of the His-tagged recombinant p53 peptide was determined by
polyacrylamide-sodium dodecyl sulfate gel electophoresis and staining with Coomassie blue.

An electrophoretic mobility shift assay (EMSA) (Wang et al., 1993) was used to determine
that the purified recombinant p53 peptide retained its specific DNA binding activity. Two double-

stranded DNAs were synthesized for this work:



Consensus p53 binding DNA 5 ~GGACATGCCCGGGCATGTCC-3’
3. -CCTGTACGGGCCCGTACAGG-5"

Competitor DNA: 5 -TTGTTTTTGGCAGTGTGCCAACAGTCG-3 *
3 -AACAAAAACCGTCACACGGTTGTCAGC-5"

The first double-stranded DNA is the consensus binding sequence for p53 (Funk et al.,
1992). The second was used as a competitor for the binding to demonstrate specificity. In the
EMSA shown in Figure 2, both of the double stranded DNAs were labeled at their 57-ends with
32P by using polynucleotide kinase. Each binding reaction used two ng (2 x 104 cpm) of the
probes. The binding was performed in 20 pl of 20% glycerol, 25 mM HEPES, pH 7.4, 50 mM
KCI, 1 mM dithiothreitol (DTT), 0.1% NP-40, 1 mg/ml bovine serum albumin at room
temperature for 30 min with various amounts of the recombinant p53 and antibodies (Figure 2).
The reactions were then run on a 4% native polyacrylamide gel electrophoresis. The anti-p53
antibodies PAb 421 and PAb 1801 (Hupp and Lane, 1992) were used to show that the
recombinant peptide could be recognized by antibodies and a non-p53-specific antibody (anti-cdc2)
was used to demonstrate that the antibody reaction was specific. The results indicate that the
recombinant His-tagged p53 peptide retains its ability to specifically recognize its DNA binding

site.

CONSTRUCTION OF THE RNA LIBRARY

A large pool of DNA templates were synthesized that contained a randomized 40-
nucleotide-long sequence flanked by defined sequences. These defined sequences consisted of a
5°-"polymerase chain reaction primer hybridization site that contained a T7 RNA polymerase
promoter and a 3°-PCR hybridization site (Figure 3). Although the use of a 40-base-long random
sequence would, in theory, produce 1.2 x 1024 different molecules (440), the actual mass of a
complete collection of 40-residue-long DNA molecules would amount to 2 mol, or approximately
27 kg of DNA. Since only 1 pg of DNA template was used in PCR reactions to generate the
double-stranded DNA library that was then used to make the RNA library, the actual number of

different RNA molecules was approximately 1014. The sequences of the DNAs used to make the
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library are shown in Figure 4. Double stranded DNA (dsDNA) molecules were amplified by
standard PCR reactions and purified on an 8% polyacrylamide gel. The purified dsDNA templates
were then transcribed by the T7 RNA polymerase kit from Epicentre Technologies in 40 mM Tris-
HCI, pH 7.5, 10 mM NaCl, 6 mM MgCl,, 2 mM spermidine, and 1 mM of each of the four

ribonucleotide triphosphates (ANTPs) to yield the initial pool of 92 nucleotide-long RNAs.

IN VITRO SELECTION OF RNA APTAMERS THAT
BIND TO THE HIS-TAGGED P53 PROTEIN

A nitrocellulose filter binding assay (Gold et al., 1995; Conrad and Ellington, 1996;
Keene, 1996) was used to select RNA aptamers that bound to the p53 protein. The initial pool of
20 g of RNA was dissolved in 200 pl of binding buffer (Tian et al., 1995) consisting of 25 mM
HEPES, pH 7.4, 50 mM KCI, 1 mM DTT, 1 mM Mg,Cl, 0.2 mM EDTA, 10% glycerol, and 0.5

mM PMSE. The RNA solution was then heated to 94° C for 3 min and cooled to 4° C. To remove
possible filter-binding RNA molecules, before each round of selection the RNA solution was
passed through a 13-mm, 0.45-um pore size Millipore HAWP cellulose acetate-cellulose nitrate
membrane on a filter holder on a vacuum manifold (J. T. Baker) under a pressure of 5 inches of
Hg (Conrad and Ellington, 1996). One microgram of the pure recombinant p53 protein was added
to the RNA in the binding buffer and the mixture incubated at room temperature for 1 h. This p53-
RNA solution was then passed through the same type of filter and washed twice with 200 pl of the
same binding buffer. The RNA bound to p53 on the filter was eluted by suspending the filter in
200 pl of 7 M urea and extracting with 600 ul of phenol-chloroform at pH 8.0. The eluted RNA
was then ethanol precipitated in the presence of 5 pg of glycogen and redissolved in 20 pl of

RNase-free water.

CONVERSION OF THE SELECTED RNAS INTO NEW DNA TEMPLATES

The selected RNAs were transcribed into cDNA by using the 3”-primer shown in Figure 3
and avian myeloblastosis virus reverse transcriptase (AMV-RT) in a total volume of 50 pl of 50

mM ‘Tris-HCI, pH 8.3, 40 mM KCl, 6 mM MgCl, 4 mM DTT, 200 pM each of the four dNTPs,
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and 1 pM of the 3”-primer on a thermocycler . Before the AMV-RT enzyme was added, the
solution was denatured at 75° C for 3 min and renatured at 25° C for 5 min. Then 20 units of
AMV-RT was added and incubated first for 30 min at 37° C and then for a further 15 min at 48° C
(Fitzwater and Polisky, 1996). The cDNA was ethanol precipitated in the presence of 5 ug of
glycogen. This material was then amplified by a standard PCR reaction using two reaction tubes,
each containing 100 pl; this volume comprised one half of the above cDNA, 10 mM Tris-HCI, pH
8.3, 50 mM KCl, 1.5 mM MgCl,, 200 pM of each dNTP, and 1 pM of each of the two primers

shown in Figure 3. The thermocycler conditions were a preliminary denaturation for 3 min at 94°
C and then 25 cycles of 94° C for 45 s, 55° C for 45 s, and 72° C for 1 min. The reaction was
then incubated for a further 7 min at 72° C. A new pool of RNAs for the next round of selection

was then generated using the T7 RNA polymerase kit described above.

ANALYSIS OF RNAS SELECTED FROM THE SELEX PROCEDURE

The selection procedure was repeated for 10 cycles. After the tenth round, the RNA was
converted one last time into dsSDNA, which was then cloned into the pCR Vector plasmid by using
the Invitrogen TA Cloning Kit. Eighteen plasmid clones were purified and sequenced using an
automated sequencer. Six different sequences were found and are shown in Figure 4. The
secondary structure and thermodynamic stability predictions made for these sequences by the
“MulFold” program (Jaeger et al., 1989) are shown in Figure 5.

The plasmid clones described above were used as PCR templates with the primers shown
in Figure 3 to generate the dsDNA that were used for T7 RNA RNA polymerase transcription of
the pure RNAs. The resulting RNAs were quantitated by spectrophotometry. These RNAs were
dissolved to a concentration of 50 ng/ul in 25 mM HEPES, pH 7.4, and 50 mM KClI and heated at
94° C for 3 min and then cooled to 4 ° C. The effect of the selected p53-binding RNAs was
studied by electrophoretic mobility shifts as described above. The results (Figure 6 and 7) indicate
that all of the selected RNAs interfere with the sequence specific DNA binding activity of p53, but
with a wide difference in the extent of inhibition by the various clones. RNA#12 demonstrated the
least interference with sequence specific DNA binding activity of p53. There was no correlation

between activity and thermodynamic stability.
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ATTEMPT TO SELECT RNAS THAT BIND TO THE
CARBOXYL TERMINUS OF P53

The carboxyl terminus of the p53 protein has been demonstrated to negatively regulate the
protein’s specific DNA binding ability. A synthetic 22-mer peptide from the carboxy! terminus
(residues 361-382) of p53 protein can restore the DNA binding and transcriptional activity of some
mutant p53 proteins (Selinova et al., 1997). Antibodies directed at the carboxyl terminus of p53
protein have been shown to enhance the specific DNA binding ability of wild type p53 protein and
to restore the ability of mutant p53 protein to bind DNA (Hupp et al., 1992; Halazonetis and
Kandil, 1993; Niewolik et al.; 1995; Abarzua et al., 1996). When single-chain fragments derived
from monoclonal antibodies directed against p53 were expressed in human tumor cells, the cell’s
mutant p53 protein transcriptional activity was restored in vivo (Fromentel, et al., 1999).

Rather than using the entire p53 protein molecule as a target for the selection of RNA
oligomers, a synthetic 22-mer peptide was purchased from Bachem Bioscience, Inc. This peptide
corresponds to residues 361-382 of the carboxyl terminus of human p53 protein (see Figure 8).
Since this peptide is positively charged, it makes a good candidate for the use of combinatorial
methods to select a RNA oligomer. The template used to produce the random RNA oligomer was
the same as used in the earlier attempt against whole p53 (Figure 3). The T7 RNA polymerase

template containing a 40-base-long random sequence was used to generate a 32P-labeled set of

RNA oligomers. This RNA was then incubated with the 22—-mer p53 peptide in 20 pl of 25 mM
HEPES at pH 7.4, 50 mM KCl, 1 mM DTT, 1 mM Mg,Cl, and 0.2 mM EDTA for 1 h at room

temperature and electrophoresed through a 5% nondenaturing acrylamide gel. Any RNA that binds
to the peptide is retarded by the net reduction in charge and the increase in the size of the complex.
The positions of the radiolabeled RNA were detected by phosphor imaging on a Molecular
Dynamics Storm 840 (Figure 9 for an example). The RNA that was retarded by binding to the
peptide is excised from the gel and eluted. This RNA that had been enriched for species that bind
to the p53 peptide was then converted back into a dsSDNA T7 RNA polymerase template by reverse
transcriptase-PCR (RT-PCR) using the primers shown in Figure 3. This new template was then
used again to generate more RNA for another round of selection. This procedure can be repeated

any number of cycles.
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After at least five cycles had been completed, the dsDNA product from the RT-PCR
reaction was then ligated into a pBluescript plasmid vector (Life Technologies) and the resulting
clones sequenced using an Applied Biosystems 310 automated capillary electrophoresis sequencer.
The sequences were examined for common features, and individual clones were selected for RNA
transcription and determination of their relative binding abilities to the p53 peptide.

Unfortunately, this procedure, even when put through 10 cycles, did not result in RNA
species that showed any better binding that the original unselected RNA library. The library that
had been put through 10 selection cycles was converted back into dsDNA and cloned into pCR-
Script plasmids. Twenty clones were sequenced on an Applied Biosystems model 310 Genetic
analyzer to see if there were any common features, but none could be found. Individual clones that
were converted back into RNA did not show any better binding to the p53 peptide than the original

unselected mixture.
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10 20 30 40 50 60 70 80 90 100
GCTAGCCATGGCTTACCCATACGACGTACCAGACTACGCAGCGC GACATCATCATCATCATCATGCGCGCCGAGCATCAGTAGGGGTTATGGAGGAGCCG
M A Y P YDV P DY A A RHHHEHHHARIRAGSLVYVGEV M E E P>

110 120 130 140 150 160 170 180 190 200
CAGTCAGATCCTAGCGTCGAGCCCC! CTCTGAGTCAGGAAACATTTTCAGACCTATGGAAACTACTTCCTGAAAACAACGTTCTGTCCCCCTTGCCGTCCC
Q0 S DPSVEZPZPLSOQETTFSDILW XK L L PENNVILSZPULP 5

210 220 230 240 250 260 270 280 290 300
AAGCAA'IGGA’IGA’I’PIGA’ICC’IGTCCCCGGACGATA’I’IGAACAA'IGG’I'ICAC‘IGAAGACCCAGG’I‘CCAGA'IGAAGCTCCCAGAA’IGCCAGAGGC‘IGCTCC
QO AMDDTLMLS?PDDTIETQGQWTFTE DPGPDEAZPRMMPEAA P>

310 320 330 340 350 360 370 380 390 400
CCCCG'IGGCCCC’IGCACCAGCAGC'I‘CCTACACCGGCGGCCCCIGCACCAGCCCCC’ICCTGGCCCCTGTCATC‘I‘I‘CTGTCCCI‘TCCCAGAAAACCTACCAG
PV AUPAPAA APTT PAAZPA AP AMAMPSWPILSSSVPS QK T Y Q>

410 420 430 440 450 460 470 480 490 500
GGCAGCTACGGTTTCCGTCTGGGCTTCTTGCATTCTGGGACAGC CAAGTCTGTGACTTGCACGTACTCCCCTGCCCTCAACAAGATGTTTTGCCAACTGG
G S YGFRTLGTPFTULUHSGTA ATZ KSVTOCTYS?PATLNK M F C Q L>

510 520 530 540 550 560 570 580 590 600
CCAAGACC'IGCCC‘IG’IGCAGC’IG‘IGGG’I’IGA’I‘I‘CCACACCCCCGCCCGGCACCCGCG’ICCGCGCCA'IGGCCATCTACAAGCAGTCACAGCACA’IGACGGA
A KT CUPV QLW VDST®PUPZPGTIRVERAMATILIYZKZ QSQ H M T E>

610 620 630 640 650 660 670 680 690 700
GGTTGTGAGGCGCTGCCCCCACCATGAGCGCTGCTCAGATAGCGATGGTCTGGCCCCTC CTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAG
VVRRC CTPHIUHETZ RTCSDSDGLAPZPOQHTLTIRVETGTNTLHR vV E>

710 720 730 740 750 760 770 780 790 800
TATTTGGATGACAGAAACACTTTTCGACATAGTGTGGTGGTGCCCTATGAGCCGCCTGAGGTTGGCTCTGACTGTACCAC CATCCACTACAACTACATGT
vy LD DRNTT FA RUHSVVVVPYEZPPEVGSDOCTTTIHY N Y M

810 820 830 840 850 860 870 880 890 900
GTAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCACK CATCATCACACTGGAAGACTCCAGTGGTAATCTACTGGGACGGAACAGCTTTGA
¢ NS S CMGGMNTZ RREPTITULTTITITULETDS SSGNZLULGRNSF E>

910 920 930 940 950 960 970 980 990 1000
GGTGCATGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAGGAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAG CTGCCCCCAGGGAGCACT
VHVCACTPG G RUDRRTETEENTLT RIEKIEKTGEZ?PHHETLZPZPGS T

1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
AAGCGAGCACTGCCCAACAACACCAGCTCCTCTCCCCAGCCARAGAAGAAACCACTGGATGGAGAATATTTCACCCTTCAGATCCGTGGGCGTGAGCGCT
K RALPDNNTS S S PQPIEKTZ KT KZPLDGEYTFTTZLOQTIRTGTRE R

1110 1120 1130 1140 1150 1160 1170 1180 1190 1200
TCGAGATGTTCCGAGAGCTGAATGAGGCCTTGGAACTCAAGGATGCCCAGGCTGGGAAGGAGCCAGGGGCGAGCAGGGCTCACTCCAGCCACCTGAAGTC
F EMPFIRTETLUNTEA ATLTETLZEXKTDA A QA AGTEXKTETPGGS SR RAHSSHTLK S

1210 1220 1230 1240 1250 1260 1270

CAAAAAGGGTCAGTCTACCTCCCGCCATAAAAAACTCATGTTCAAGACAGAAGGGCCTGACTCAGACTGAGGGATCC
K XK G 0 S TS RHZ KT KILMTFIEKTETGZPDSD *

Figure 1. The sequence of the expression cassette for human p53 with a hemaglutinin-His-tagged leader

(underlined).
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I 2 3 4 S 6 7 8% 9 10 1112 13 14 15 16 17 18 19 200 21

Figure 2. Electromobility shift assay of the purified human His-tagged p53 protein, using the 32p.

labeled consensus p53-binding DNA probe and a 4% polyacrylamide native gel.

Lane 1, 32P-labeled consensus p53-binding DNA probe alone.

Lanes 2-5, 1, 0.5, 0.25, 0.1 pg p53, respectively.

Lanes 6-8, 0.5 pg p53 plus 0.1, 0.2, and 0.3 pg of p53-specific antibody PAb421, respectively.

Lanes 9-11, 0.5 pg p53 plus 0.1, 0.2, and 0.3 pg of p53-specific antibody PAb1801, respectively.

Lanes 12-14, 0.5 pg p53 plus 0.1, 0.2, and 0.3 pg of a anti-cdc2 antibody, respectively.

Lanes 15-18, 0.5 ug p53 plus 0.02, 0.05, 0.10, and 0.20 pg of unlabeled consensus p53-binding
DNA probe, respectively.

Lanes 19-21, 0.5 pg p53 plus 0.02, 0.05, 0.10, and 0.20 pg of unlabeled nonspecific DNA

probe, respectively.
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5 TAATACGACTCACTATAGGGCGAATTCGGGTT (N) 4oCCCTTTAGTGAGGGTTAATT
3 ATTATCCTGAGTGATATCCCGCTTAAGCCCAA (N) 40GGGAAATCACTCCCAATTAA

5'-primer 5’ TAATACGACTCACTATAGGGCGAATTCGGGTT

3’-primer 5’ AATTAACCCTCACTAAAGGG

Figure 3. T7 transcription template for RNA oligomer and PCR primers. The T7 promoter is

underlined.
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RNA #3

5'GGGCGAAUUCGGGUUUGGUAUGCGGGGUUACUAAUUAGUCGAGUGUGUUGUUUCUCCCUUUAGUGAGGGUUAAUU—3’

RNA #6

5’GGGCGAAUUCGGGUUAUGGUGGUACUGAUGGUGGUUCUCGUUGCAGUCCACGUGUCCCUUUAGUGAGGGUUAAUU—3’

RNA #9

5 ' GGGCGAAUUCGGGUUUUUGGUAGUGGAGGUAGGUACUGUGGUUUUGUCCGUCGGUCCCUUUAGUGAGGGUUAAUU-3

RNA #12

5 ' GGGCGAAUUCGGGUUGGAUAGUAGGCGCAUAUGGCAUCUUCGUGGUUGUGUAUUGCCCUUUAGUGAGGGUUAAUU-3

RNA #15

5’ GGGCGAAUUCGGGUUUUUAGGGAGGGACUAUUUUAAGAGAGUCGCCGUCGGUGUCCCCUUUAGUGAGGGUUAAUU-3

RNA #17

5 ' GGGCGAAUUCGGGUUUUGUAGUGGUGGAGGAGGUUCUCGGUUCGUGCGUGGCUAGCCCUUUAGUGAGGGUUAAUU-3

Figure 4. p53-binding RNAs
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Figure 5. The secondary structures and thermodynamic stabilities (E) of the p53-binding RNAs

predicted by the MulFold program.
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Figure 6. The effect of selected RNAs on the sequence-specific binding activity of human wild-type

p53 protein as measured by electromobility shifts on a 4% native polyacrylamide gel electophoresis. The

procedure and labeled probe were the same as in Figure 2.

Lane 1, 32P-labeled consensus p53-binding DNA probe alone.

Lane 2, 0.3 pg p53. no RNA

Lanes 3-4, 0.3 ug p53 plus 0.05 and 0.1 pg RNA#3, respectively
Lanes 5-6, 0.3 pg p53 plus 0.05 and 0.1 ug RNA#6, respectively
Lanes 7-8, 0.3 ug p53 plus 0.05 and 0.1 pyg RNA#9, respectively
Lanes 9-10, 0.3 pug p53 plus 0.05 and 0.1 pg RNA#12, respectively
Lanes 11-12, 0.3 ug p53 plus 0.05 and 0.1 pg RNA#15, respectively

Lanes 13-14, 0.3 ug p53 plus 0.05 and 0.1 pg RNA#17, respectively

17




Figure 7. The effect of selected RNAs and tRNAPDE on the sequence-specific binding activity of

human wild-type p53 protein as measured by electromobility shifts on a 4% native polyacrylamide gel

electophoresis. The procedure and labeled probe was the same as for Figure 2.

Lane 1, 32P-labeled consensus p53-binding DNA probe alone.
Lane 2, 0.2 yg p53, no RNA.

Lanes 3-4, 0.2 yg p53 plus 0.1 and 0.2 ug RNA#12, respectively.
Lanes 5-6, 0.2 ug p53 plus 0.1 and 0.2 pg RNA#17, respectively.
Lanes 7-8, 0.2 ug p53 plus 0.1 and 0.2 yg RNA#15, respectively.

Lanes 9-10, 0.2 pg p53 plus 0.1 and 0.2 pg RNA#3, respectively.

Lanes 11-12, 0.2 pg p53 plus 0.1 and 0.2 ug tRNAPDE, respectively.
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H-Gly-Ser-Arg-Ala-His-Ser-Ser-His-Leu-Lys-Ser-
Lys-Lys-Gly-GIn-Ser-Thr-Ser-Arg-His-Lys-Lys-OH

Figure 8. Target peptide corresponds to residues 361-382 of the

human p53 protein.
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<4— RNA bound to peptide

Unbound RNA

Figure 9. Nondenaturing ge! electrophoresis of the fifth round of selection of RNA sequences that
bind to the p53 22-mer peptide. The left lane contained the RNA without any peptide, and the right lane

contained 100 ng of the peptide
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KEY RESEARCH ACCOMPLISHMENTS

A large amount of recombinant human p53 protein was produced that had a six-histidine-

residue-long peptide leader.

The recombinant p53 was purified and shown to be capable of specifically binding to-its

known double stranded consensus DNA sequence.

A library of DNA containing a random stretch of 40 residues was synthesized and used to

generate the random RNA library.

The RNA library was put through ten rounds of selection for binding to the recombinant

p53 protein.

The DNA templates for the selected RNAs were cloned and sequenced.

p53 binding of the selected RNAs was measured by electromobility shift gel assay.

The RNA library was used to attempt the selection of species that could bind to a peptide

from the carboxyl terminus of p53.
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REPORTABLE OUTCOMES

The project has not resulted in a publication. The techniques that we developed will be

used to support a NIH grant application.
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CONCLUSIONS

The recombinant His-tagged p53 protein was expressed and purified in large amounts by
use of the baculovirus system in insect cell culture. This peptide was shown to be capable of
specific binding to a p53 consensus DNA binding sequence. This material was successfully used
to select RNA species that could bind to the p53. The attempt to select a RNA to bind to the
recombinant His-tagged p53 succeeded. However, the more difficult challenge of finding a
particular RNA that could effect a significant change on p53 was not successful. Attempts to select
a RNA to bind to the peptide from the critical region of the carboxyl terminus of p53 also did not
succeed. The overall goal of the project was probably too ambitious since the selected p53-binding
RNA molecules each would have little chance of having the desired effect of changing the structure
of p53 significantly. It should be far easier to find RNAs that interfere with an important
interaction rather than promote one.

The use of SELEX methods to find a nucleic acid to bind to an important component of the
cells machinery may more profitably be employed against a relatively newly discovered protein,
hypoxia-inducible factor-1 (HIF-1). The techniques that we have acquired for this p53 project will
be used against this new target. HIF-1 is a transcription factor whose expression is tightly
controlled by oxygen levels. The oxygen levels of relatively poorly vascularized tumor tissue
usually leads to hypoxia (Semenza, 1998, Tacchini et al., 1999, Guillemin and Krasnow, 1997).
This condition causes the induction of the expression of a number of genes, such as vascular
endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) that promote
angiogenesis to increase the flow on oxygenated blood to the growing tumor (Mustonen and
Alitalo, 1995, Risau, 1997, Hanahan and Folkman, 1996, Ferrara, 1999). The induction of these
genes is caused by the HIF-1 transcription factor. HIF-1 is a heterodimer made up by the HIF-1
alpha and HIF-1 beta (Wang and Semenza, 1995). The HIF-1 beta was recently identified as the
previously known aryl hydrocarbon receptor nuclear translocator (ARNT) (Wang et al., 1995).

Interfering with the interaction between the two components of HIF-1 should prevent the
active hypoxia transcription factor complex from forming. This in turn should prevent hypoxic
cells from inducing their normal response to low oxygen conditions. If the same techniques

described above can be used to select RNA molecules that can interfere with the HIF-1 subunit
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interaction, it could lead to new approaches to anticancer treatments by reducing the supply of
nutrients to a tumor. An RNA that can interfere with the binding of two peptides should be
inherently easier than trying to find an RNA that restores normal functioning to p53.

Our laboratories have expression vectors for both HIF-1 alpha and beta. We have also
cloned the HIF-1 alpha cDNA into a histidine-tagged fusion protein expression vectors that can be
used in mammalian and bacterial hosts. The histidine-tagged version of HIF-1 alpha has the same
six hisitidine residues near the amino terminus as the p53 used for the work described above and
allows for a similar purification procedure. We have used the bacterial expression vector to make
large amounts of purified HIF-1 alpha in E. coli. We have also shown that the mammalian
expression vector produces histidine-tagged HIF-1 alpha capable of forming an active HIF-1
complex with ARNT in vivo despite the presence of the amino terminal fusion peptide. We are
now applying for grants to support further work in this area based on our experience gained on the

p53 project.
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